

Systematic Reviews and Meta-analysis

Introduction to Clinical Research: A Two-week Intensive Course July 17, 2013

Sonal Singh, MD, MPH Assistant Professor

Key messages

- Systematic reviews (SR) summarize existing evidence for a specific research question.
- SR are important to identify research gaps and limitations of previous studies, to justify new research and to inform decision
- Meta-analyses provide summary estimates from different studies and are based on effect and variance estimates.

2

Definition of a systematic review

A review of existing evidence that uses a explicit and scientific methods

Contains a clear description of:

- Research question preferably using PICOTS
- Inclusion/exclusion criteria for studies
- Process used to identify studies
- Methods used to assess quality
- Methods use to abstract and summarize data

May or may not combine data quantitatively (meta-analysis)

Types of questions addressed by systematic reviews			
Research questions	Type of studies included		
Etiology (some exposure disease association)	Cohort or case-control studies		
Diagnostic tests	Test accuracy studies, (RCTs)		
Therapy	RCTs, observational studies		
Prognosis (some predictor outcome association)	Cohort studies		
Outcome measurement	Measurement studies		

■ Justification of new research, scientifically and ethically ■ Learn about challenges of previous studies → avoid problems ■ Inform decision makers ■ Become an expert in topic ■ Have another publication

Roles of systematic reviews II

Identification of Articles

- Work with a librarian!
- Search in multiple databases, at least Medline and EMBASE
- Many studies not in English (>> than for RCTs)
- Hand-searching when time and resources available

11

- 14 double-blind placebo-controlled trials-13 trials enrolled smokers; one trial enrolled smokeless tobacco users.
 13 trials excluded patients with a history of cardiovascular disease; one trial included participants with stable cardiovascular disease but excluded those with unstable enrollegated of the participants. cardiovascular disease. Sample sizes from 250 to 1210.
- The primary outcome was the continuous abstinence rate in 12 trials the long-term quit rate in 1 trial and long-term safety in 1 trial.
- Duration of treatment ranged from 7 weeks to 52 weeks, and the total duration of study, including treatment and follow-up, ranged from 24 to 52 weeks.

Singh S et al. CMAJ 2011;183:1359-1366

CMAJ-JAMC

What is a Meta-analysis?

- An optional component of a systematic review
- Definition:

"the statistical analysis of a large collection of analysis results from individual studies for the purpose of integrating the findings." (Glass 1976)

Inverse-variance Weighted Average

- Require from each study
 - estimate of treatment effect; and
 - standard error (or variance) of estimate
- Combine these using a weighted average:

$$weighted \ average = \frac{sum \ of \ (estimate \times wiehgt)}{sum \ of \ weights} = \frac{\sum Y_i W_i}{\sum W_i}$$

$$Variance \ (weighted \ average) = \frac{1}{sum \ of \ weights} = \frac{1}{\sum W_i}$$

 Y_i - intervention effect estimated in the ith study W_i - weight given to the ith study, and is usually chosen to be the inverse of the variance of the effect estimate.

Why Do a Meta-analysis (cont'd)?

- To increase power and precision
 - detect effect as statistically significant; narrower CIs
- To quantify effect sizes and their uncertainty
 - reduce problems of interpretation due to sampling variation
- To assess homogeneity/heterogeneity of results
 - quantify between-study variation
- To answer questions not posed by the individual studies
 - factors that differ across studies
- To settle controversies arising from conflicting studies
 - generate new hypotheses

	ICS		No IC	s		Peto Odds Ratio	Peto Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	Peto, Fixed, 95% C	Peto, Fixed, 95% 0
1.2.1 ICS-LABA vs. LABA							
Anzueto SCO100250 2009	3	394	0	403	1.0%	7.60 [0.79, 73.27]	
Calverley SCO30003 2007	78	1546	61	1542	43.0%	1.29 [0.92, 1.81]	
Calverley SFCB3024 2003	3	358	0	372	1.0%	7.73 [0.80, 74,55]	+
erguson SCO40043 2008	3	394	3	388	1.9%	0.98 [0.20, 4.90]	
Hannania SFCA3007 2003	1	178	0	177	0.3%	7.35 [0.15, 370,30]	
Cardos SCO30006 2007	1	507	- 1	487	0.6%	0.96 [0.06, 15.39]	
Mahler SFCA3006 2002	0	165	0	160		Not estimable	
SCO100470 2006	1	518	0	532	0.3%	7.59 [0.15, 382.72]	
SCO40041 2008	1	92	1	94	0.6%	1.02 [0.06, 16.46]	
Fashkin 2008	1	845	- 1	284	0.5%	0.27 [0.01, 6.52]	
Nouters SCO40002 2005	5	189	5	184	3.2%	0.97 [0.28, 3.41]	
Subtotal (95% CI)		5186		4623	52.5%	1.34 [0.99, 1.82]	•
Fotal events	97		72				
leterogeneity: Chi ² = 7.54, dt	f = 9 (P =	0.58); F	= 0%				
est for overall effect: $Z = 1.8$	6 (P = 0.0	6)					
.2.2 ICS alone vs. Placebo							
Burge FLTB3054 2000	4	376	7	375	3.5%	0.57 [0.17, 1.89]	
Calverley SCO30003 2007	65	1552	57	1544	38.0%	1.14 [0.79, 1.64]	
Calverley SFCB3024 2003	2	374	1	361	1.0%	1.88 [0.20, 18.17]	-
LTA3025 2005	3	434	0	206	0.8%	4.39 [0.39, 49.66]	-
Hannania SFCA3007 2003	0	183	1	185	0.3%	0.14 [0.00, 6.90]	-
Johnell 2002	5	322	3	331	2.6%	1.70 [0.42, 6.87]	
Mahler SFCA3006 2002	1	168	0	181	0.3%	7.98 [0.16, 403.44]	
Paggiaro FLIT97 1998	1	142	0	139	0.3%	7.23 [0.14, 364.68]	
SFCT01 2005	1	131	0	125	0.3%	7.06 (0.14, 356.10)	
ashkin 2008	1	275	0	300	0.3%	8.09 [0.16, 409.34]	
Subtotal (95% CI)		3957		3747	47.5%	1.19 [0.86, 1.64]	-
otal events	83		69				
leterogeneity: Chi ² = 7.62, di	f = 9 (P =	0.57); F	= 0%				
est for overall effect: Z = 1.0	15 (P = 0.2	9)					
Fotal (95% CI)		9143		8370	100.0%	1.27 [1.01, 1.58]	•
Fotal events	180		141				
leterogeneity: Chi ² = 15.43,	df = 19 (P	= 0.69	: I2 = 0%				+ + +
							0.05 0.2 1

When Not to Do a Meta-analysis

- "Garbage in garbage out"
 - a meta-analysis is only as good as the studies in it
 - narrower confidence interval around combination of biased studies worse than the biased studies on their own
 - beware of reporting biases (e.g. publication bias)
- "Mixing apples with oranges"
 - not useful for learning about apples, although useful for learning about fruit!
 - studies must address the same question
 - ▶ though the question can, and usually must, be broader

BLOO		ı for Cardiovascu Meta-analysis	ılar Ever
Population	Source of baseline risk	Baseline Risk	Annualize d Number Needed to Harm
Smokers without CVD	Control event rate of Meta-analysis	0.82%	167
Smokers with stable CVD	Control event rate of trial among smokers with CVD	5.8%	28

Limitations

- Trials did not use adjudicated CV definitions
- Could not conduct time to event analysis due to individual patient data

Coi		

 Among smokers exposure to varenicline is associated with a statistically significant increased risk of CV events

Key messages

- Systematic reviews (SR) summarize existing evidence for a specific research question.
- SR are important to identify research gaps and limitations of previous studies, to justify new research and to inform decision
- Meta-analyses provide summary estimates from different studies and are based on effect and variance estimates.

35