	-
Power and Sample Size:	
Issues in Study Design	
John McGready	
Department of Biostatistics, Bloomberg School	
Lecture Topics]
Re-visit concept of statistical power	
- Factors influencing power	
Factors influencing power	
Sample size determination when comparing two means	
Sample size determination when comparing two proportions	
2	
	1
Section A	
Power and Its Influences	

 Consider the following results from a study done on 29 women, all 35-39 years old

	Sample Data		
	n	Mean SBP	SD of SBP
OC users	8	132.8	15.3
Non-OC Users	21	127.4	18.2

4

Example

- Of particular interest is whether OC use is associated with higher blood pressure
- Statistically speaking we are interested in testing :

 H_o : $\mu_{OC} = \mu_{NO~OC}$

$$\mbox{H}_{\mbox{\scriptsize o}}\colon \, \mu_{\rm OC}$$
 - $\mu_{\rm NO\;OC}$ = 0

 $H_A\text{:}~\mu_{OC}\!\neq~\mu_{NO~OC}$

$$\mbox{H}_{\mbox{\scriptsize A}}\mbox{:}\; \mu_{OC}\,$$
 - $\mu_{NO\;OC}\neq 0$

Here $~\mu_{OC}$ represents (population) mean SBP for OC users, $\mu_{NO~OC}$ (population) mean BP for women not using OC

Example

Let's unveil the results of this test from our data:

	Sample Data		
	n	Mean SBP	SD of SBP
OC users	8	132.8	15.3
Non-OC	21	127.4	18.2

.

- The sample mean difference in blood pressures is 132.8 127.4 = 5.4
- = This could be considered scientifically significant, however, the result is not statistically significant (or even close to it!) at the α = .05 level
- Suppose, as a researcher, you were concerned about detecting a population difference of this magnitude if it truly existed
- This particular study of 29 women has low power to detect a difference of such magnitude

7

Power

Recall, from lecture four of SR1:

Power

- $\,\blacksquare\,$ Power is a measure of "doing the right thing" when H_A is true!
- Higher power is better (the closer the power is to 1.0 or 100%)
- We can calculate power for a given study if we specify a specific H_A
- This OC/Blood pressure study has power of .13 to detect a difference in blood pressure of 5.4 or more, if this difference truly exists in the population of women 35-39 years old!
- When power is this low, it is difficult to determine whether there is no statistical difference in population means or we just could not detert it

Power

 $\begin{tabular}{ll} \bf & Recall, the sampling behavior of $\overline{x}_1-\overline{x}_2$ is normally distributed (large samples) with this sampling distributed centered at true mean difference. If H_0 truth, then curve is centered at 0 \\ \end{tabular}$

10

Power

Recall, the sampling behavior of $\overline{x_1}-\overline{x_2}$ is normally distributed (large samples) with this sampling distributed centered at true mean difference. If H_A truth, then curve is centered at some value of the distributed centered at some value of the distributed states.

...

Power

= H_o will be rejected (for α =.05) if the sample result, $\overline{x}_1 - \overline{x}_2$, is more than 2 standard errors away from 0, either above or below

What Influences Power?

- In order to INCREASE power for a study comparing two group means, we need to do the following:
 2. Increase the sample size in each group

What Influences Power?

- In order to INCREASE power for a study comparing two group means, we need to do the following:
 Increase the sample size in each group

What Influences Power?

- In order to INCREASE power for a study comparing two group means, we need to do the following:
 Increase the α-level of the hypothesis test (functionally speaking, make it "easier to reject")

here, with α =.05:

What Influences Power?

- In order to INCREASE power for a study comparing two group means, we need to do the following:
 - 3. Increase the α -level of the hypothesis test (functionally speaking, make it "easier to reject")

here, with α =.10:

Power and Studies

- Power can be computed after a study is completed

 - Can only be computed after a study is completed
 Can only be computed for specific H_A's: i.e. this study had XX% to detect a difference in population means of YY or greater.
 Sometimes presented as an "excuse" for non statistically significant finding: "the lack of a statically significant association between A and B could be because of low power (< 15%) to detect a mean difference of YY or greater between."
 - Can also be presented to corroborate with a non statistically significant result
- Many times, in study design, a required sample size is computed to actually achieve a certain preset power level to find a "Clinically/scientifically" minimal important $\ difference\ in\ means$
 - In next section we will show how to do this using Stata
 - "Industry standard" for power: 80% (or greater)

Section B

Sample Size Calculations when Comparing Group Means

Exam	n	_

- Blood pressure and oral contraceptives
 Suppose we used data from the example in Section A to motivate the following question:
 Is oral contraceptive use associated with higher blood pressure among individuals between the ages of 35-39?

Pilot Study

Recall, the data:

	Sample Data		
	n	Mean SBP	SD of SBP
OC users	8	132.8	15.3
Non-OC	21	127.4	18.2

Pilot Study

- We think this research has a potentially interesting association
- We want to do a bigger study
 - We want this larger study to have ample power to detect this association, should it really exist in the population
- What we want to do is determine sample sizes needed to detect about a 5mm increase in blood pressure in O.C. users with 80% power at significance level α = .05
 - Using pilot data, we estimate that the standard deviations are 15.3 and 18.2 in O.C. and non-O.C. users respectively

Pilot Study	
 Here we have a desired power in mind and want to find the sample sizes necessary to achieve a power of 80% to detect a population difference in blood pressure of five or more mmHg between the two 	
groups	
25	-
	J
Pilot Study	1
We can find the necessary sample size(s) of this study if we specify .	
 α-level of test (.05) Specific values for μ₁ and μ₂ (specific H_A) and hence d= μ₁-μ₂: usually represents the minimum scientific difference of 	
interest) — Estimates of σ_1 and σ_2	
The desired power(.80)	
26	
20	
	1
Pilot Study How can we specify $d=\mu_1$, μ_2 and estimate population SDs?	
 Researcher knowledge—experience makes for good educated guesses 	
Make use of pilot study data!	
27	1

Pilot Study

- = Fill in blanks from pilot study α -level of test (.05) Specific HA (μ_{OC} =132.8, $\mu_{NO\,OC}$ =127.4), and hence d= μ_1 - μ_2 =5.4 mmHg
 - Estimates of $~\sigma_{\text{OC}}$ (= 15.3) and $\sigma_{\text{NO OC}}$ (=18.2) The power we desire (.80)

Pilot Study

- Given this information, we can use Stata to do the sample size calculation
- "sampsi" command
 - Command syntax (items in italics are numbers to be supplied by researcher)

sampsi $\mu_1 \mu_2$, alpha(α) power(power) sd1(σ_1) sd2(σ_2)

Stata Results

Blood Pressure/OC example

```
. sampsi 132.8 127.4, alpha(.05) power(.8) sd1(15.3) sd2(18.2)
Estimated sample size for two-sample comparison of means
Test Ho: m1 = m2, where m1 is the mean in population 1 and m2 is the mean in population 2
Assumptions:
           alpha = 0.0500 (two-sided)
power = 0.8000
m1 = 132.8
m2 = 127.4
sd1 = 15.3
sd2 = 18.2
n2/n1 = 1.00
Estimated required sample sizes:
                n1 =
n2 =
                             153
153
```

Pilot Study/Stata Results

- Our results from Stata suggest that in order to detect a difference in B.P. of 5.4 units (if it really exists in the population) with high (80%) certainty, we would need to enroll 153 O.C. users and 153 non-users
- This assumed that we wanted equal numbers of women in each group!

Stata Resulss

Blood Pressure/OC example

```
. sampsi 132.8 127.4, alpha(.05) power(.8) sd1(15.3) sd2(18.2)
Estimated sample size for two-sample comparison of means
Test Ho: m1 = m2, where m1 is the mean in population 1 and m2 is the mean in population 2
           alpha = 0.0500 (two-sided)
power = 0.8000
m1 = 132.8
m2 = 127.4
sd1 = 15.3
sd2 = 18.2
n2/n1 = 1.00
Estimated required sample sizes:
```

Pilot Study/Stata Results

- Suppose we estimate that the prevalence of O.C. use amongst women 35-39 years of age is 20%
 We wanted this reflected in our group sizes
- If O.C. users are 20% of the population, non-OC users are 80%
 - There are four times as many non-users as there are users (4:1 ratio)

Pilot Study/Stata Results We can specify a ratio of group sizes in Stata Again, using "sampsi" command with "ratio" option sampsi μ_1 μ_2 , alpha(α) power(power) sd1(σ_1) sd2(σ_2) ratio(n_2/n_1) Stata Resulss Blood Pressure/OC example . sampsi 132.8 127.4, alpha(.05) power(.8) sd1(15.3) sd2(18.2) ratio(4) Estimated sample size for two-sample comparison of means Test Ho: m1 = m2, where m1 is the mean in population 1 and m2 is the mean in population 2 alpha = 0.0500 (two-sided) power = 0.8000 m1 = 132.8 m2 = 127.4 sdl = 15.3 add; = 18.2 Section C Sample Size Determination for Comparing Two Proportions

	1
Power for Comparing Two Proportions	
Same ideas as with comparing means	
37	
Pilot Study]
 We can find the necessary sample size(s) of this study if we specify . α-level of test 	
— Specific values for p_1 and p_2 (specific H_A) and hence $d=p_1$ - p_2 : usually represents the minimum scientific difference of	
interest) — The desired power	
38	
	1
Pilot Study Given this information, we can use Stata to do the sample size	
calculation	
 "sampsi" command Command syntax (items in italics are numbers to be supplied by researcher) 	
sampsi $p_1 p_2$, alpha (α) power $(power)$	
39	

Another Example

- Two drugs for treatment of peptic ulcer compared (Familiari, et al., 1981)
 - The percentage of ulcers healed by pirenzepine (drug A) and trithiozine (drug B) was 77% and 58% based on 30 and 31 patients respectively (p-value = .17), 95% CI for difference in proportions healed (PORIGIA PORIGIA) was(-.04, .42)
 - The power to detect a difference as large as the sample results with samples of size 30 and 31 respectively is only $25\%\,$

	Healed	Not Healed	Total
Drug A	23	7	30
Drug B	18	13	31

Continued 40

Example

- As a clinician, you find the sample results intriguing want to do a larger study to better quantify the difference in proportions healed
- Redesign a new trial, using aformentioned study results to "guestimate" population characteristics
 - Use p_{DRUGA} = .77 and p_{DRUGB} = .58
 - 80% power
 - $-\alpha = .05$
- Command in Stata sampsi .77 .58, alpha (.05) power (.8)

Example

Command in Stata

sampsi .77 .58, alpha (.05) power (.8)

. sampsi .77 .58, alpha (.05) power (.8)

Estimated sample size for two-sample comparison of proportions

Test Ho: p1 = p2, where p1 is the proportion in population 1 and p2 is the proportion in population 2

Assumptions:

alpha = 0.0500 (two-sided)
power = 0.8000
p1 = 0.7700
p2 = 0.5800
n2/n1 = 1.00

Estimated required sample sizes:

Example

- Suppose you wanted two times as many people on trithiozone ("Drug B") as compared to pirenzephine ("Drug A")
 - Here, the ratio of sample size for Group 2 to Group 1 is 2.0
- Can use "ratio" option in "sampsi" command

44

Example Changing the ratio sampsi .77 .58, alpha (.05) power (.9) ratio(2) . sampsi .77 .58, alpha (.05) power (.9) ratio(2) Estimated sample size for two-sample comparison of proportions Test Ho: pl = p2, where pl is the proportion in population 1 and p2 is the proportion in population 2 Assumptions: alpha = 0.0500 (two-sided) power = 0.9000 pl = 0.7700 p2 = 0.5800 n2/n1 = 2.00 Estimated required sample sizes: al = 103 s2 = 206

Sample Size for Comparing Two Proportions

- A randomized trial is being designed to determine if vitamin A supplementation can reduce the risk of breast cancer
 - The study will follow women between the ages of 45-65 for one year
 - Women were randomized between vitamin A and placebo
- What sample sizes are recommended?

46

Breast Cancer/Vitamin A Example

 Design a study to have 80% power to detect a 50% relative reduction in risk of breast cancer w/vitamin A

(i.e.
$$RR = \frac{p_{VITA}}{p_{PLACEBO}} = .50$$
)

using a (two-sided) test with significance level α -level = .05

- To get estimates of proportions of interest:
 - using other studies, the breast cancer rate in the controls can be assumed to be $150/100,\!000\,\mathrm{per}$ year

4

Breast Cancer/Vitamin A Example

■ A 50% relative reduction: if

$$RR = \frac{p_{VITA}}{p_{PLACEBO}} = .50$$
 then, $p_{VITA} = .50 \times p_{PLACEBO}$

So, for this desired difference in the relative scale:

$$p_{VITA} = \frac{150}{100,000} \times 0.5 = \frac{75}{100,000}$$

Notice, that this difference on the absolute scale, $\ p_{\it VITA} - p_{\it PLACEBO}$, is much smaller in magnitude:

$$-\frac{75}{100,000} = -0.00075 = -0.075\%$$

Breast Cancer Sample Size Calculation in Stata

- "sampsi" command sampsi .00075 .0015, alpha(.05) power(.8)
 - . sampsi .00075 .0015, alpha(.05) power(.8)

Estimated sample size for two-sample comparison of proportions

Test Ho: p1 = p2, where p1 is the proportion in population 1 and p2 is the proportion in population 2

alpha = 0.0500 (two-sided)
power = 0.8000
p1 = 0.0008
p2 = 0.0015
n2/n1 = 1.00

Estimated required sample sizes:

Breast Cancer Sample Size Calculation in Stata

- You would need about 34,000 individuals per group
- Why so many?
 - Difference between two hypothesized proportions is very small:

= .00075

We would expect about 50 cancer cases among the controls and $25\,$ cancer cases among the vitamin A group

$$placebo: \frac{150}{100,000} \times 34,000 = 51$$

vitamin A:
$$\frac{75}{100,000} \times 34,000 \approx 25$$

Breast Cancer/Vitamin A Example

Suppose you want 80% power to detect only a 20% (relative) reduction in risk associated with vitamin A

A 20% relative reduction: if $RR = \frac{p_{\scriptscriptstyle VITA}}{p_{\scriptscriptstyle PLACEBO}} = .80$ then $p_{\scriptscriptstyle VITA} = .80 \times p_{\scriptscriptstyle PLACEBO}$

So, for this desired difference in the relative scale:

$$p_{VITA} = \frac{150}{100,000} \times 0.8 = \frac{120}{100,000}$$

Notice, that this difference on the absolute scale, $\textit{p}_{\textit{VITA}}$ – $\textit{p}_{\textit{PLACEBO}}$, is much smaller in magnitude:

$$-\frac{30}{100,000} = -0.0003 = -0.03\%$$

Breast Cancer Sample Size Calculation in Stata ■ "sampsi" command sampsi .0012 .0015, alpha(.05) power(.8) . sampsi .0012 .0015, alpha(.05) power(.8) Estimated sample size for two-sample comparison of proportions Test Ho: p1 = p2, where p1 is the proportion in population 1 and p2 is the proportion in population 2 Assumptions: alpha = 0.0500 (two-sided) power = 0.8000 p1 = 0.0012 p2 = 0.0015 n2/n1 = 1.00 Estimated required sample sizes:

Breast Cancer-Vitamin A Example Revisited

- You would need about 242,000 per group!
- We would expect 360 cancer cases among the placebo group and 290 among vitamin A group

An Alternative Approach—Design a Longer Study

- Proposal
 - Five-year follow-up instead of one year Here:

 $p_{_{VITA}}{\approx}5\times.0012=.006$ $p_{PLACEBO} \approx 5 \times .0015 = .0075$

- Need about 48,000 per group
 Yields about 290 cases among vitamin A and 360 cases among placebo
- Issue
 - Loss to follow-up

Section D	
Sample Size and Study Design Principles:	
A Brief Summary	
Designing Your Own Study	
 When designing a study, there is a tradeoff between : Power α-level 	
 Sample size Minimum detectable difference (specific Ha) 	
■ Industry standard—80% power, α = .05	
56	
Designing Your Own Study	
What if sample size calculation yields group sizes that are too big (i.e., can not afford to do study) or are very difficult to recruit subjects for study?	
 Increase minimum difference of interest Increase α-level Decrease desired power 	

Designing Your Own Study	
 Sample size calculations are an important part of study proposal Study funders want to know that the researcher can detect a relationship with a high degree of certainty (should it really exist) 	
·	
 Even if you anticipate confounding factors, these approaches are the best you can do and are relatively easy 	
 Accounting for confounders requires more information and sample size has to be done via computer simulation—consult a statistician! 	
58	
Designing Your Own Study	
 When would you calculate the power of a study? Secondary data analysis Data has already been collected, sample size is fixed 	-
 Pilot Study—to illustrate that low power may be a contributing factor to non-significant results and that a larger study may be appropriate 	
59	-
u ,	
Designing Your Own Study	
 What is this specific alternative hypothesis? Power or sample size can only be calculated for a specific alternative hypothesis 	-
When comparing two groups this means estimating the true population means (proportions) for each group	-

	_
Designing Your Own Study	
 What is this specific alternative hypothesis? Therefore specifying a difference between the two groups This difference is frequently called minimum detectable 	
difference or effect size, referring to the minimum detectable difference with scientific interest	
61	<u> </u>
Designing Your Own Study	
 Where does this specific alternative hypothesis come from? Hopefully, not the statistician! As this is generally a quantity of scientific interest, it is best 	
estimated by a knowledgeable researcher or pilot study data This is perhaps the most difficult component of sample size calculations, as there is no magic rule or "industry standard"	
62	
FYI—Using Stata to Compute Power	
 I promised you in part A of this lecture that I would eventually show you how to compute the power to detect difference in a study that has already been conducted 	
 The "sampsi" command is still the command for this—we just need to feed it slightly different information for it to compute power 	
concern a sugarcy different information for it to compute power	

Calculating Power

- In order to calculate power for a study comparing two population means, we need the following:
 Sample size for each group
 Estimated (population) means, μ₁ and μ₂ for each group—these values frame a specific alternative hypothesis (usually minimum difference of scientific interest)
 - Estimated (population) SD's, σ_1 and σ_2
 - α -level of the hypothesis test

Calculating Power

The Blood Pressure/Oral Contraceptive Example

	Sample Data		
	n	Mean SBP	SD of SBP
OC users	8	132.8	15.3
Non-OC	21	127.4	18.2

Calculating Power

- Fill in information below with results from this study

 - Sample size for each group (n_{OC} = 8, $n_{NO OC}$ = 21)

 Estimated (population) means, μ_{OC} = 132.8 and $\mu_{NO OC}$ = 127.4

 Estimated (population) sd's, σ_{OC} = 15.3 and $\sigma_{NO OC}$ = 18.2 for
 - each group
 - α -level of the hypothesis test (.05)

Calculating Power

Using sampsi in Stata

```
. sampsi 132.8 127.4, sd1(15.3) sd2(18.2) n1(8) n2(21)
Estimated power for two-sample comparison of means
Test Ho: m1 = m2, where m1 is the mean in population 1 and m2 is the mean in population 2
alpha = 0.0500 (two-sided)
m1 = 132.8
m2 = 127.4
sd1 = 15.3
sd2 = 18.2
sample size n1 = 8
n2 = 21
n2/n1 = 2.63
Estimated power:
            power = 0.1268
```

Calculating Power

- In order to calculate power for a study comparing two population proportions, we need :

 - portions, we need: Sample size for each group Estimated (population) proportions, p_1 and p_2 for each group: these values frame a specific alternative hypothesis (it usually is the minimum difference of scientific interest)
 - α -level of the hypothesis test

Calculating Power

Ulcer Drug/Healing Example

	Healed	Not Healed	Total
Drug A	23	7	30
Drug B	18	13	31

In this study:

$$\hat{p}_{DRUGA} = \frac{23}{30} \approx .77$$

$$\hat{p}_{DRUGB} = \frac{18}{31} \approx .58$$

Fill in information below with results form this study	
- Sample size for each group ($n_{DRUGA} = 30$, $n_{DRUGB} = 31$)	
- Estimated (population) proportions, $p_{DRUGA} = .77$ and	
$ ho_{DRUG} e^{\pm}$.58 — $lpha$ -level of the hypothesis test (.05)	
a tevet of the hypothesis test (188)	
	-
	-
70	
	=
Calculating Power	
catcutating i ower	
 Using the sampsi command 	
- sampsi p_1 p_2 , $n1(n_1)$ $n2(n_2)$ alpha(α)	
. sampsi .77 .58, nl(30) n2(31) alpha(.05)	
Estimated power for two-sample comparison of proportions	
Test Ho: pl = p2, where pl is the proportion in population 1	
and p2 is the proportion in population 2 Assumptions:	
alpha = 0.0500 (two-mided)	
p1 = 0.7700	
p2 = 0.5800 sample size n1 = 30	
n2 = 31 n2/n1 = 1.03	
Estimated power:	
power = 0.2525	
Note: For the above sample size(s) and proportion(s), the normal approximation to the	
binomial may not be very accurate. Thus, power calculations are questionable.	
71	
	-
	-
Section E	
Section 2	
FYI if Interested	

Calculating Power

 Consider the following results from a study done on 29 women, all 35-39 years old

	Sample Data		
	n	Mean SBP	SD of SBP
OC users	8	132.8	15.3
Non-OC Users	21	127.4	18.2

73

Example

 Suppose we want to design a study with 80% power to detect a mean difference of at least 5.4 mmHg between the two group

mean difference of at least 5.4 mmHg between
$$-$$
 will reject at α =.05 if $\left| \frac{\overline{x}_{OC} - \overline{x}_{NOOC}}{SE(\overline{x}_{OC} - \overline{x}_{NOOC})} \right| \ge 2$

 $- \quad \text{as such, want} \ \, \Pr\!\left(\!\! \frac{\overline{x}_{\scriptscriptstyle OC} - \overline{x}_{\scriptscriptstyle NOOC}}{\left|SE(\overline{x}_{\scriptscriptstyle OC} - \overline{x}_{\scriptscriptstyle NOOC})\right|} \!\! \geq \! 2\right) \!\! = \! 0.80 \qquad \text{if } \mu_{\scriptscriptstyle OC} \!\! - \! \mu_{\scriptscriptstyle NOOC} \! \geq \! 5.4 \text{mmHg}$

Example

• Consider $SE(\overline{x}_{OC} - \overline{x}_{NOOC})$

Using the estimates from the small study for population SDs:

$$SE(\overline{x}_{OC} - \overline{x}_{NOOC}) = \sqrt{\frac{\sigma^2_{OC}}{n_{OC}} + \frac{\sigma^2_{NOOC}}{n_{NOOC}}}$$

with n_{OC} = $n_{NO\ OC}$ =n this becomes:

$$SE(\overline{x}_{OC} - \overline{x}_{NOOC}) = \sqrt{\frac{\sigma^2 oc}{n} + \frac{\sigma^2 NOOC}{n}} = \sqrt{\frac{1}{n}(\sigma^2 oc + \sigma^2 NOOC)}$$

Suppose we want to design a study with 80% power to detect a mean difference of at least 5.4 mmHg between the two groups

- i.e.
$$\Pr\left[\frac{\overline{x}_{OC} - \overline{x}_{NOOC}}{\sqrt{\frac{1}{n}(\sigma^2_{OC} + \sigma^2_{NOOC})}} \ge 2\right] = 0.80 \text{ if } \mu_{OC} - \mu_{NOOC} \ge 5.4 \text{mmHg}$$

$$\Pr\!\!\left(\left|\overline{x}_{oc} - \overline{x}_{NOOC}\right| \ge 2 \times \sqrt{\frac{1}{n}(\sigma^2_{oc} + \sigma^2_{NOOC})}\right) = 0.80 \quad \text{if } \mu_{OC} - \mu_{NOOC} \ge 5.4 \text{mmHg}$$

But if μ_{OC} - $\mu_{NO\ OC} \ge 5.4$ mmHg, then assuming large n, $|\bar{x}_{OC} - \bar{x}_{NO\ OC}|$ is a normally

distributed process with mean $\mu_{\textit{OC}}$ - $\mu_{\textit{NO OC}}$ and standard error

$$SE(\overline{x}_{OC} - \overline{x}_{NOOC}) = \sqrt{\frac{\sigma^2_{OC}}{n} + \frac{\sigma^2_{NOOC}}{n}} = \sqrt{\frac{1}{n}(\sigma^2_{OC} + \sigma^2_{NOOC})}$$

Example

Suppose we want to design a study with 80% power to detect a mean difference of at least 5.4 mmHg between the two groups

$$\text{So} \quad \Pr \bigg(\left| \overline{x}_{oc} - \overline{x}_{NOOC} \right| \geq 2 \times \sqrt{\frac{1}{n} (\sigma^2_{OC} + \sigma^2_{NOOC})} \bigg) = 0.80 \quad \text{if} \quad \mu_{OC} - \mu_{NOOC} \geq 5.4 \text{mmHg}$$

Becomes:

$$\Pr\left(\frac{\overline{x}_{oc} - \overline{x}_{NOOC}}{\sqrt{\frac{1}{n}(\sigma^2_{oc} + \sigma^2_{NOOC})}}\right) \ge \frac{2 \times \sqrt{\frac{1}{n}(\sigma^2_{oc} + \sigma^2_{NOOC})} - (\mu_{oc} - \mu_{NOOC})}{\sqrt{\frac{1}{n}(\sigma^2_{oc} + \sigma^2_{NOOC})}}\right) = 0.8$$

Example

Suppose we want to design a study with 80% power to detect a mean difference of at least 5.4 mmHg between the two groups

But on a standard normal curve, the value that cuts of 80% of the area to its right is 0.84.

So we need to solve:

$$\frac{2\times\sqrt{\frac{1}{n}(\sigma^2_{\ oc}+\sigma^2_{\ NOOC})}-(\mu_{oc}-\mu_{NOOC})}}{\sqrt{\frac{1}{n}(\sigma^2_{\ oc}+\sigma^2_{\ NOOC})}}=-0.84}$$
 Some more beautiful algebra:

$$2 \times \sqrt{\frac{1}{n} (\sigma^{2}_{oc} + \sigma^{2}_{NOOC})} - (\mu_{oc} - \mu_{NOOC}) = -0.84 \times \sqrt{\frac{1}{n} (\sigma^{2}_{oc} + \sigma^{2}_{NOOC})}$$

 Suppose we want to design a study with 80% power to detect a mean difference of at least 5.4 mmHg between the two groups

Some more beautiful algebra:

$$(2+0.84) \times \sqrt{\frac{1}{n}(\sigma^2_{oC} + \sigma^2_{NOOC})} = (\mu_{oC} - \mu_{NOOC})$$

squaring both sides:

$$(2+0.84)^2 \times \frac{1}{n} (\sigma^2 oc + \sigma^2 NOOC) = (\mu_{OC} - \mu_{NOOC})^2$$

$$\frac{(2+0.84)^2 \times (\sigma^2_{OC} + \sigma^2_{NOOC})}{(\mu_{OC} - \mu_{NOOC})^2} = n$$

79

Example

 Suppose we want to design a study with 80% power to detect a mean difference of at least 5.4 mmHg between the two groups

Plugging on our info:

$$\frac{(2+0.84)^2 \times (15.3^2 + 18.2^2)}{(5.4)^2} = n$$

$$\frac{8.1 \times 565}{20.3} = n$$

 $157\approx n$

80

Example

- It is also possible to design a study to estimate a quantity, such as a mean difference or difference in proportions with a desired level of precision
- In other word, the necessary sample sizes can be estimated to try to get a confidence interval of a desired maximum width

Suppose we wanted to design a study with equal sample sizes to estimate the mean difference within ± 3 mmHg
 i.e. design the study to have a specific precision

Now using the estimates from the small study for population SDs:

$$SE(\overline{x}_{OC} - \overline{x}_{NOOC}) = \sqrt{\frac{\sigma^2_{OC}}{n_{OC}} + \frac{\sigma^2_{NOOC}}{n_{NOOC}}}$$

with $n_{\it OC}$ = $n_{\it NO~OC}$ =n this becomes:

$$SE(\overline{x}_{OC} - \overline{x}_{NOOC}) = \sqrt{\frac{\sigma^2_{OC}}{n} + \frac{\sigma^2_{NOOC}}{n}} = \sqrt{\frac{1}{n}(\sigma^2_{OC} + \sigma^2_{NOOC})}$$

Example

We want

$$2 \times SE(\overline{x}_{OC} - \overline{x}_{NOOC}) = 3$$

$$2 \times \sqrt{\frac{1}{n} (\sigma^2_{OC} + \sigma^2_{NOOC})} = 3$$

plugging in pilot data:

$$2 \times \sqrt{\frac{1}{n}(15.3^2 + 18.2^2)} = 3$$

	Sample Data		
	n	Mean SBP	SD of SBP
OC users	8	132.8	15.3
Non-OC Users	21	127.4	18.2

Example

Solving algebraically

$$2 \times \sqrt{\frac{1}{n}(15.3^2 + 18.2^2)} = 3$$

$$\sqrt{\frac{1}{n}(15.3^2 + 18.2^2)} = \frac{3}{2}$$

$$\frac{1}{n}(15.3^2 + 18.2^2) = \left(\frac{3}{2}\right)^2$$
$$\frac{(15.3^2 + 18.2^2)}{\left(\frac{3}{2}\right)^2} = n$$

n ≈ 251

Example Solving algebraically $2 \times \sqrt{\frac{1}{n}(15.3^2 + 18.2^2)} = 3$ $\sqrt{\frac{1}{n}(15.3^2 + 18.2^2)} = \frac{3}{2}$ $\frac{1}{n}(15.3^2 + 18.2^2) = (\frac{3}{2})^2$ $\frac{(15.3^2 + 18.2^2)}{\left(\frac{3}{2}\right)^2} = n$ $n \approx 251$