INTRODUCTION TO CLINICAL RESEARCH

Introduction to Linear Regression

Karen Bandeen-Roche, Ph.D.

July 23, 2013

Acknowledgements

• Marie Diener-West

• Rick Thompson

• ICTR Leadership / Team
Outline

1. Regression: Studying association between (health) outcomes and (health) determinants
2. Correlation
3. Linear regression: Characterizing relationships
4. Linear regression: Prediction
5. Future topics: multiple linear regression, assumptions, complex relationships

Introduction

• 30,000-foot purpose: Study association of continuously measured health outcomes and health determinants

• Continuously measured outcomes (“linear”)
 – No gaps
 – Total lung capacity (l) and height (m)
 – Birthweight (g) and gestational age (mos)
 – Systolic BP (mm Hg) and salt intake (g)
 – Systolic BP (mm Hg) and drug (trt, placebo)
Introduction

- 30,000-foot purpose: Study association of continuously measured health outcomes and health determinants

- Association
 - Connection
 - Determinant predicts the outcome
 - A query: Do people of taller height tend to have a larger total lung capacity (l)?

Example: Association of total lung capacity with height

Study: 32 heart lung transplant recipients aged 11-59 years

. list tlc height age in 1/10

+----------+-----+-----+-----+----------+-----+-----+
| tlc | height | age |
+----------+-----+-----+-----+----------+-----+-----+
3.41	138	11
3.4	149	35
8.05	162	20
5.73	160	23
4.1	157	16
5.44	166	40
7.2	177	39
6.	173	29
4.55	152	16
4.83	177	35
+----------+-----+-----+-----+----------+-----+-----+
Introduction

- Two analyses to study association of continuously measured health outcomes and health determinants
 - Correlation analysis: Concerned with measuring the strength and direction of the association between variables. The correlation of X and Y (Y and X).
 - Linear regression: Concerned with predicting the value of one variable based on (given) the value of the other variable. The regression of Y on X.

Correlation Analysis

Some specific names for “correlation” in one’s data:
- r
- Sample correlation coefficient
- Pearson correlation coefficient
- Product moment correlation coefficient
Correlation Analysis

• Characterizes the extent of linear relationship between two variables, and the direction

 – How closely does a straight-line trend (non-flat) characterize the relationship of the two variables?
 • Exactly: $r = 1$ or -1
 • Not at all (e.g. flat relationship): $r=0$
 • $-1 \leq r \leq 1$

 – Does one variable tend to increase as the other increases ($r>0$), or decrease as the other increases ($r<0$)

Types of Correlation

(continued)
Examples of Relationships and Correlations

Correlation: Lung Capacity Example

$r = 0.865$
FYI: Sample Correlation Formula

\[r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \cdot \sum_{i=1}^{n} (y_i - \bar{y})^2}} \]

Heuristic: If I draw a straight line through the vertical middle of scatter of points created by plotting y versus x, \(r \) divides the SD of the heights of points on the line by the SD of the heights of the original points.

Correlation – Closing Remarks

- The value of \(r \) is independent of the units used to measure the variables.
- The value of \(r \) can be substantially influenced by a small fraction of outliers.
- The value of \(r \) considered “large” varies over science disciplines:
 - Physics: \(r=0.9 \)
 - Biology: \(r=0.5 \)
 - Sociology: \(r=0.2 \)
- \(r \) is a “guess” at a population analog.
Linear regression

• Aims to predict the value of a health outcome, Y, based on the value of an *explanatory* variable, X.

 – What is the relationship between average Y and X?
 • The analysis “models” this as a line
 • We care about “slope”—size, direction
 • Slope=0 corresponds to “no association”

 – How precisely can we predict a given person’s Y with his/her X?

Linear regression – Terminology

• Health outcome, Y
 – Dependent variable
 – Response variable

• Explanatory variable (predictor), X
 – Independent variable
 – Covariate
Linear regression - Relationship

- Model: \(Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \)

Linear regression - Relationship

- In words
 - Intercept \(\beta_0 \) is mean \(Y \) at \(X=0 \)
 - … mean lung capacity among persons with 0 height
 - Recommendation: “Center”
 - Create new \(X^* = (X-165) \), regress \(Y \) on \(X^* \)
 - Then: \(\beta_0 \) is mean lung capacity among persons 165 cm
 - Slope \(\beta_1 \) is change in mean \(Y \) per 1 unit difference in \(X \)
 - … difference in mean lung capacity comparing persons who differ by 1 cm in height
 - … irrespective of centering
 - Measures association (=0 if slope=0)
Linear regression – Sample inference

• We develop best guesses at β_0, β_1 using our data
 – Step 1: Find the “least squares” line
 • Tracks through the middle of the data “as best possible”
 • Has intercept b_0 and slope b_1 that make sum of $[Y_i - (b_0 + b_1 X_i)]^2$ smallest
 – Step 2: Use the slope and intercept of the least squares line as best guesses
 • Can develop hypothesis tests involving β_1, β_0 using b_1, b_0
 • Can develop confidence intervals for β_1, β_0 using b_1, b_0

Linear regression – Lung capacity data
Linear regression – Lung capacity data

• In STATA - “regress” command:
 Syntax “regress yvar xvar”

```
. regress tlc height

Source |       SS       df       MS              Number of obs =      32
-----------+------------------------------           F(  1,    30) =   89.12
Model |  93.7825029     1  93.7825029           Prob > F      =  0.0000
Residual |  31.5694921    30   1.0523164           R-squared     =  0.7482
-----------+------------------------------           Adj R-squared =  0.7398
Total |  125.351995    31  4.04361274           Root MSE      =  1.0258

------------------------------------------------------------------------------
  tlc |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-----------+----------------------------------------------------------------
  height |   .1417377    .015014     9.44   0.000     .1110749    .1724004
      _cons |  -17.10484   2.516234    -6.80   0.000    -22.24367     -11.966

```

TLC of -17.1 liters among persons of height = 0
If centered at 165 cm: TLC of 6.3 liters
among persons of height = 165

On average, TLC increases by 0.142 liters per cm
increase in height, or equivalently, by 1.42 liters
per 10 cm increase in height.
Linear regression – Lung capacity data

- Inference: p-value tests the null hypothesis that the coefficient = 0.

```
regress tlc height
Source |       SS       df       MS              Number of obs =      32
-------------+------------------------------           F(  1,    30) =   89.12
Model |  93.7825029     1  93.7825029           Prob > F      =  0.0000
Residual |  31.5694921    30   1.0523164           R-squared     =  0.7482
-------------+------------------------------           Adj R-squared =  0.7398
Total |  125.351995    31  4.04361274           Root MSE      =  1.0258
------------------------------------------------------------------------------
tlc |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
height |   .1417377    .015014     9.44   0.000     .1110749    .1724004
_cons |  -17.10484   2.516234    -6.80   0.000    -22.24367     -11.966
------------------------------------------------------------------------------
```

We reject the null hypothesis of 0 slope (no linear relationship).
The data support a tendency for TLC to increase with height.

t=coef/std.err: bigger than 2 roughly corresponds to p<0.05

We reject the null hypothesis of 0 slope (no linear relationship).
The data support a tendency for TLC to increase with height.
Linear regression – Lung capacity data

- Inference: Confidence interval for coefficients; these both exclude 0.

```
. regress tlc height
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>93.7825029</td>
<td>1</td>
<td>93.7825029</td>
<td>F(1, 30) = 89.12</td>
</tr>
<tr>
<td>Residual</td>
<td>31.5694921</td>
<td>30</td>
<td>1.0523164</td>
<td>R-squared = 0.7482</td>
</tr>
<tr>
<td>Total</td>
<td>125.351995</td>
<td>31</td>
<td>4.04361274</td>
<td>Root MSE = 1.0258</td>
</tr>
</tbody>
</table>

| tlc | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-----|---------|-----------|------|-----|---------------------|
| height | .1417377 | .015014 | 9.44 | 0.000 | .1110749 - .1724004 |
| _cons | -17.10484 | 2.516234 | -6.80 | 0.000 | -22.24367 - -11.966 |

We are 95% confident that the interval (0.111, 0.172) includes the true slope. Data are consistent with an average per-cm of height increase in TLC ranging between 0.111 and 0.172. The data support a tendency for TLC to increase with height.

Linear regression

- Aims to predict the value of a health outcome, Y, based on the value of an explanatory variable, X.

- What is the relationship between average Y and X?
 - The analysis “models” this as a line
 - We care about “slope”—size, direction
 - Slope=0 corresponds to “no association”

- How precisely can we predict a given person’s Y with his/her X?
Linear regression - Prediction

• What is the linear regression prediction of a given person’s Y with his/her X?
 – Plug X into the regression equation
 – The prediction “\(\hat{Y} \)" = \(b_0 + b_1X \)

• Data Model: \(Y_i = b_0 + b_1X_i + \varepsilon_i \)
Linear regression - Prediction

• What is the linear regression prediction of a given person’s Y with his/her X?
 – Plug X into the regression equation
 \[\hat{Y} = b_0 + b_1 X \]
 – The prediction “\(\hat{Y} \)” = \(b_0 + b_1 X \)
 – The “residual” \(\epsilon = \text{data-prediction} = Y - \hat{Y} \)

 – Least squares minimizes the sum of squared residuals, e.g. makes predicted Y’s as close to observed Y’s as possible (in the aggregate)

Linear regression - Prediction

• How precisely does \(\hat{Y} \) predict Y?
 – Conventional measure: R-squared

 • Variance of \(\hat{Y} \) / Variance of Y
 • = Proportion of Y variance “explained” by regression
 • = squared sample correlation between \(\hat{Y} \) and Y

 • In examples so far (because only one X):
 = squared sample correlation between Y, X
Linear prediction – Lung capacity data

- Inference: Confidence interval for coefficients; these both exclude 0.

```
. regress tlc height
```

```
Source |       SS       df       MS              Number of obs =  32
-------------+------------------------------           F(  1,    30) =   89.12
Model |  93.7825029     1  93.7825029           Prob > F      =  0.0000
Residual |  31.5694921    30   1.0523164           R-squared     =  0.7482
-------------+------------------------------           Adj R-squared =  0.7398
Total |  125.351995    31  4.04361274           Root MSE      =  1.0258

------------------------------------------------------------------------------
  tlc |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
  height |   .1417377    .015014     9.44   0.000     .1110749    .1724004
     _cons |  -17.10484   2.516234    -6.80   0.000    -22.24367     -11.966
------------------------------------------------------------------------------
```

R-squared = 0.748: 74.8 % of variation in TLC is characterized by the regression of TLC on height. This corresponds to correlation of sqrt(0.748) = .865 between predictions and actual TLCs. This is a precise prediction.

A correlation of 0.8-0.9

(continued)
Correlation: Lung Capacity Example

$r=.865$

Linear regression - Prediction

- Cautionary comment: In ‘real life’ you’d want to evaluate the precision of your predictions in a sample different than the one with which you built your prediction model

- “Cross-validation”
• To study how mean TLC varies with height...
 – Could dichotomize height at median and compare TLC between two height groups using a two-sample t-test
Lung capacity example – two height groups

```
ttest tlc, by(height_above_med) unequal
Two-sample t test with unequal variances
```

<table>
<thead>
<tr>
<th>Group</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[5% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td><= Median</td>
<td>16</td>
<td>3.024375</td>
<td>.3286601</td>
<td>1.314641</td>
<td>4.323858</td>
</tr>
<tr>
<td>> Median</td>
<td>16</td>
<td>8.190625</td>
<td>.2974915</td>
<td>1.189966</td>
<td>7.516537</td>
</tr>
<tr>
<td>combined</td>
<td>32</td>
<td>6.097070</td>
<td>.5524750</td>
<td>2.010874</td>
<td>5.865203</td>
</tr>
<tr>
<td>diff</td>
<td>-3.12525</td>
<td>.4433043</td>
<td>-4.031973</td>
<td>-2.220527</td>
<td></td>
</tr>
</tbody>
</table>

Satterthwaite's degrees of freedom: 29.797

Ho: mean(Median) - mean(Above Med) = diff = 0
Hα: diff < 0
 t = -7.9522
 P < t = 0.0000

Hα: diff = 0
 t = -7.0922
 P > |t| = 0.0000

Hα: diff > 0
 P > t = 1.0000

Could replicate this analysis with SLR of TLC on X=1 if height > median and X=0 otherwise

More advanced topics
Regression with more than one predictor

• “Multiple” linear regression
 – More than one X variable (ex.: height, age)
 – With only 1 X we have “simple” linear regression

 $$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_p X_{ip} + \varepsilon_i$$

• Intercept β_0 is mean Y for persons with all Xs=0

• Slope β_k is change in mean Y per 1 unit difference in X_k among persons identical on all other Xs
More advanced topics
Regression with more than one predictor

• Slope β_k is change in mean Y per 1 unit difference in X_k among persons identical on all other Xs
 – i.e. holding all other Xs constant
 – i.e. “controlling for” all other Xs

• Fitted slopes for a given predictor in a simple linear regression and a multiple linear regression controlling for other predictors do NOT have to be the same
 – We’ll learn why in the lecture on confounding

More advanced topics
Assumptions

• Most published regression analyses make statistical assumptions

• Why this matters: p-values and confidence intervals may be wrong, and coefficient interpretation may be obscure, if assumptions aren’t approximately true

• Good research reports on analyses to check whether assumptions are met (“diagnostics”, “residual analysis”, “model checking/fit”, etc.)
More advanced topics
Linear Regression Assumptions

- Units are sampled independently (no connections such as familial relationship, residential clustering, etc.)
- Posited model for average Y-X relationship is correct
- Normally (Gaussian; bell-shaped) distributed responses for each X
- Variability of responses (Ys) the same for all X

Assumptions well met:
More advanced topics
Linear Regression Assumptions

Non-normal responses per X

Non-constant variability of responses per X
More advanced topics
Linear Regression Assumptions

Lung capacity example

![Graph showing linear relationship between height and residual values.]

More advanced topics
Types of relationships that can be studied

• ANOVA (multiple group differences)

• ANCOVA (different slopes per groups)
 – Effect modification: lecture to come

• Curves (polynomials, broken arrows, more)

• Etc.
Main topics once again

1. Regression: Studying association between (health) outcomes and (health) determinants
2. Correlation
3. Linear regression: Characterizing relationships
4. Linear regression: Prediction
5. Future topics: assumptions, model checking, complex relationships