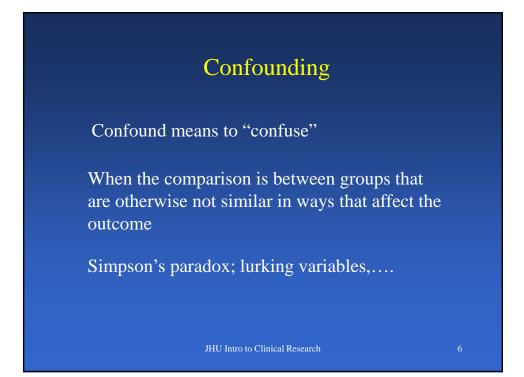
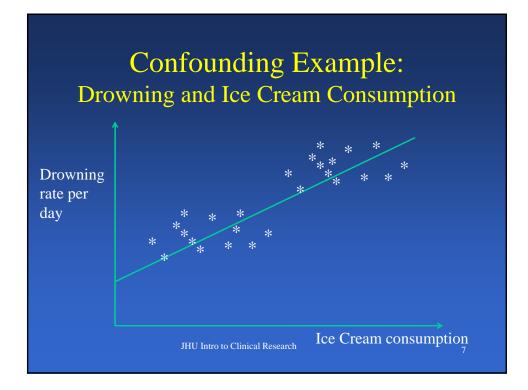

Confounding and Effect Modification

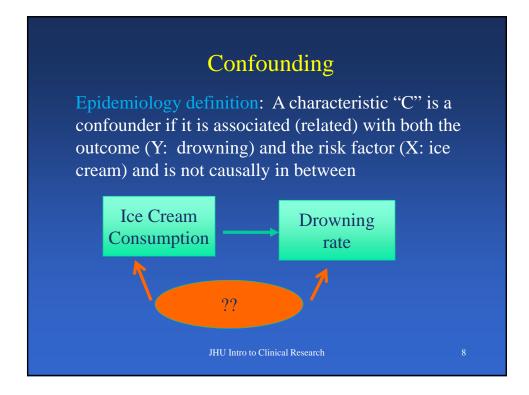
Karen Bandeen-Roche, Ph.D.

July 23, 2013

JHU Intro to Clinical Research

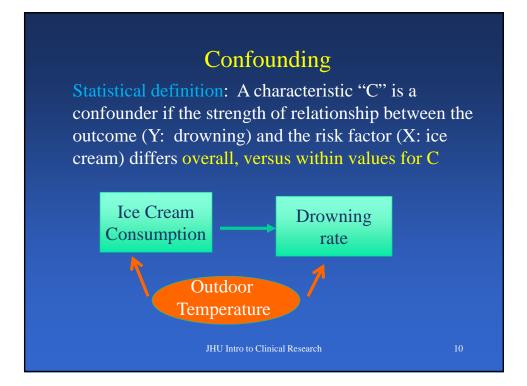

Counterfactual Data Table							
Person	Drug	Y(0)	Y(1)	Y(1)-Y(0)			
1	0	22	16	-6			
2	0	18	17	-1			
3	0	20	15	-5			
4	1	20	18	-2			
5	1	18	16	-2			
б	1	22	14	-8			
Average		20	16	-4			
JHU Intro to Clinical Research 3							

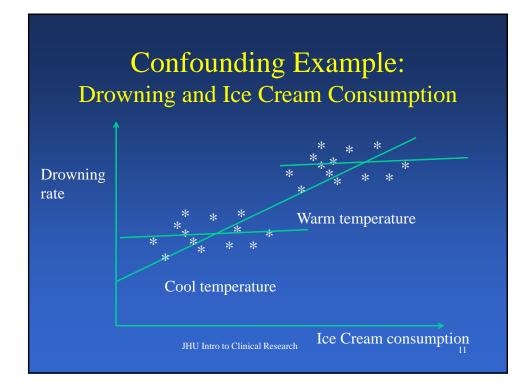

Person	Drug	Y(0)	Y(1)	Y(1)-Y(0)
1	0	22	?	?
2	0	18	?	?
3	0	20	?	?
4	1	?	18	?
5	1	?	16	?
6	1	?	14	?
Average		20	16	-4

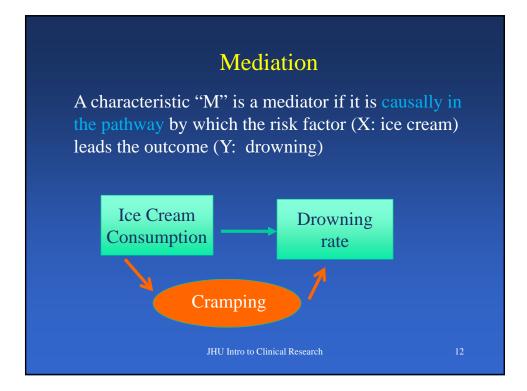

Goal of Statistical "Causal" Inference

- "Fill-in" missing information in the counterfactual data table
- Use data for persons receiving the other treatment to fill-in a persons missing outcome
- Inherent assumption that the other persons are similar except for the treatment: "otherwise similar"
- Compare like-to-like

JHU Intro to Clinical Research





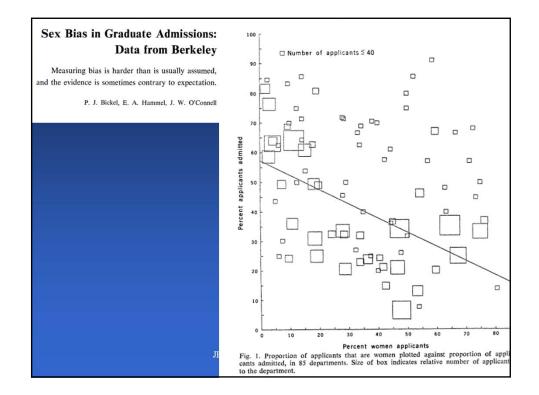

Confounding

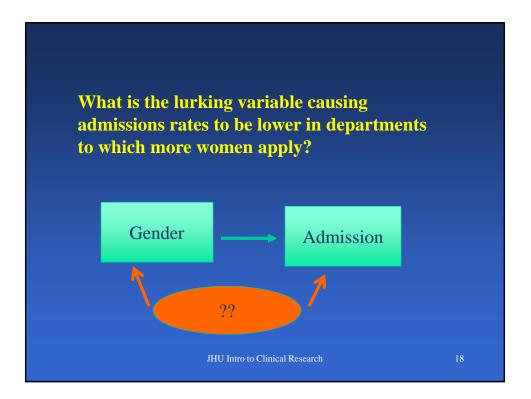
Epidemiology definition: A characteristic "C" is a confounder if it is associated (related) with both the outcome (Y: drowning) and the risk factor (X: ice cream) and is not causally in between

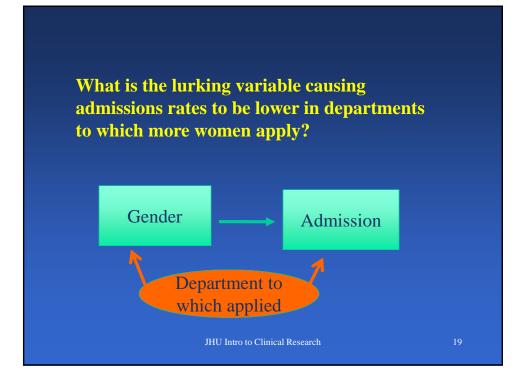
Confounding

Statistical definition: A characteristic "C" is a confounder if the strength of relationship between the outcome and the risk factor differs with, versus without, comparing like to like on C

Thought example:


Outcome = frailty Exposure = vitamin D intake Confounders= SES, "health mindedness," etc.


JHU Intro to Clinical Research

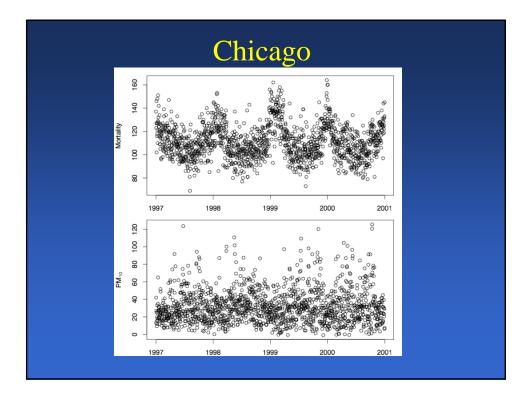

<section-header><section-header><section-header><section-header>

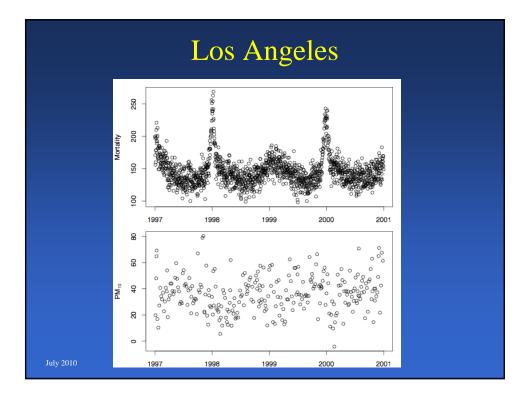
	Number Males Applied	Number Males Accepted	Male % Accepted	Female % Accepted	Number Females Accepted	Number Females Applied
A	825	512	62	82	89	108
В	560	353	63	68	17	25
С	325	120	37	34	202	593
D	191	53	28	24	94	393
Total	1901	1038			402	1119

A B C	Admitted 65 63 35	Male Applicants 43 30 17	Female Applicants 10 2 53
D	25	10	35
Total	48	100	100

	Number Males Applied	Number Males Accepted	Male % Accepted	Female – Male % Accepted	Female % Accepted	Number Females Accepted	Number Females Applied	
A	825	512	62	+20	82	89	108	
В	560	353	63		68	17	25	
С	325	120	37		34	202	593	
D	191	53	28		24	94	393	
Total	1901	1038	55		36	402	1119	
	JHU Intro to Clinical Research							

Controlling for Confounding


Unadjusted (for department) difference in admission rates between women and men: 36-55 = -19%

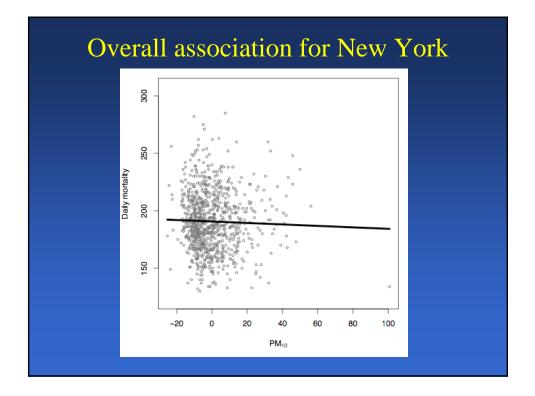

Adjusted (for department) difference in admission rates between women and men: Average(20, 5, -3, -4) = 4.5%Weighted ave(20, 5, -3, -4) = 3.2%

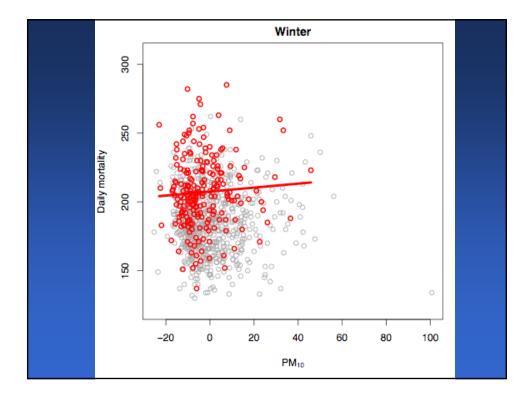
July 2010

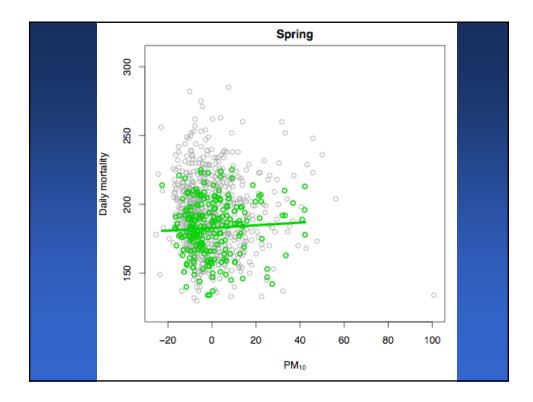
JHU Intro to Clinical Research

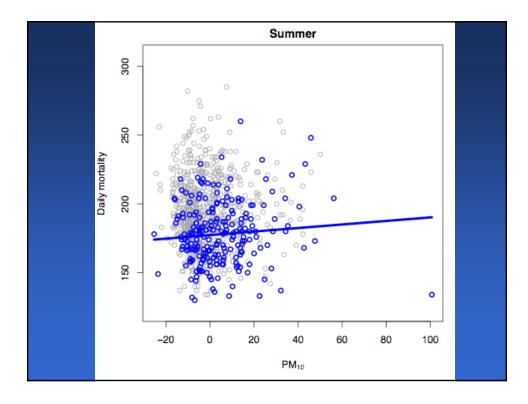
...Now for something entirely differentParticulate air pollution and mortality

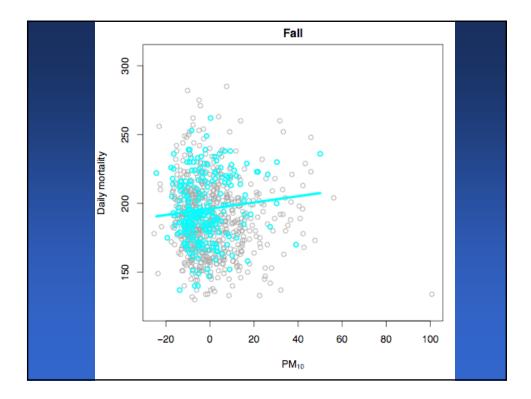
Correlation: Daily mortality and PM_{10}

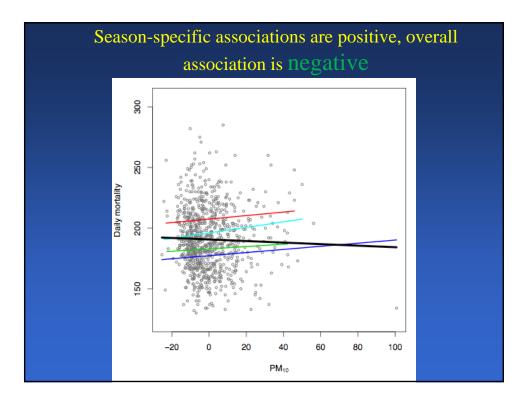

• New York	-0.031
Chicago	-0.036
• Los Angeles	-0.019

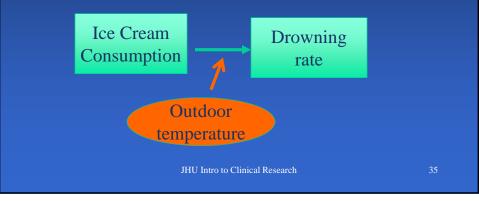

> Season could be **confounding** the correlation between PM_{10} and mortality.

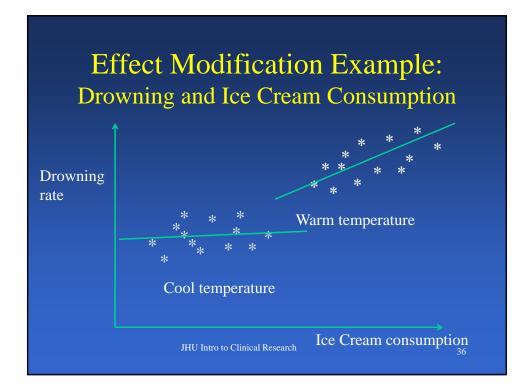

> What would happen if we "removed" season from the analysis?


Season-specific correlations


	All Year	Winter	Spring	Summer	Fall
NY	-0.031	0.059	0.059	0.086	0.100
Chicago	-0.036	-0.017	0.054	0.140	-0.030
LA	-0.019	0.157	0.063	0.042	-0.118




Over	all corre	lations
	All Year	Average over Seasons
New York	-0.031	0.076
Chicago	-0.036	0.037
LA	-0.019	0.036


Overall correlations	
----------------------	--

	All Year "Unadjusted"	Average 4 within-season values "Adjusted"	Average 12 within month values "Adjusted"
New York	-0.031	0.076	0.079
Chicago	-0.036	0.037	0.063
LA	-0.019	0.036	0.050

Effect modification

A characteristic "E" is an effect modifier if the strength of relationship between the outcome (Y: drowning) and the risk factor (X: ice cream) differs within levels of E

Vol. 46, No. 5, 200 ISSN 0735-1097/05/\$30.0 doi:10.1016/j.jacc.2005.05.066

The Effect of Losartan Versus Atenolol on Cardiovascular Morbidity and Mortality in Patients With Hypertension Taking Aspirin

The Losartan Intervention for Endpoint

Reduction in Hypertension (LIFE) Study Eigil Fossum, MD, PHD,* Andreas Moan, MD, PHD,† Sverre E. Kjeldsen, MD, PHD,*‡ Richard B. Devereux, MD, FACC,§ Stevo Julius, MD, SCD,‡ Steven M. Snapinn, PHD,|| Jonathan M. Edelman, MD,|| Ulf de Faire, MD, PHD,¶ Frej Fyhrquist, MD, PHD,# Hans Ibsen, MD, PHD,* Krister Kristianson, PHD,†† Ole Lederballe-Pedersen, MD, PHD,‡‡ Lars H. Lindholm, MD, PHD,§§ Markku S. Nieminen, MD, FACC,# Per Omvik, MD, PHD,||| Suzanne Oparil, MD, FACC,¶¶ Hans Wedel, PHD,## Björn Dahlöf, MD, PHD,** for the LIFE Study Group

<u>Question</u>: Does aspirin use **modify** the association between treatment and adverse outcomes?

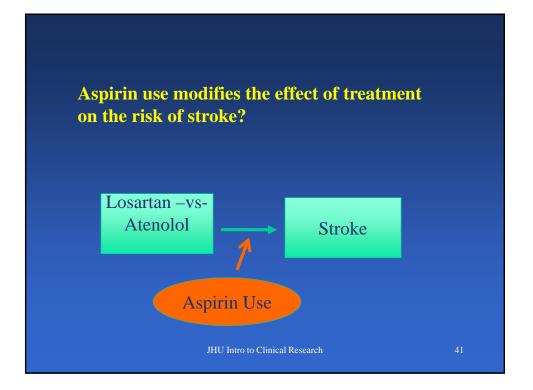
В 20 A 18 16 14 12 10 5 8 6 3 2 4 2 Rate (%) 0 0 0 6 12 18 24 30 36 42 48 54 60 66 0 6 12 18 24 30 38 42 48 54 60 68 Endpoint С D 10 ; 10 9 9 8 7 6 5 4 3 а 2 0 0 6 12 18 24 30 36 42 48 54 60 66 0 6 12 18 24 30 36 42 48 54 60 66 Month - Atenolol - Aspirin at Baseline ----- Losartan - Aspirin at Baseline ····· Losartan - No Aspirin at Baseline ---- Atenolol - No Aspirin at Baseline Figure 1. (A) Kaplan-Meier curves for the primary end point; p = 0.016 for aspirin interaction. (B) Kaplan-Meier curves for eardiovascular death. (C) Kaplan-Meier curves for stroke. (D) Kaplan-Meier curves for myocardial infarction; p = 0.037 for aspirin interaction. Table 4. End Points in Losartan- and Atenolol-Treated Patients Taking Aspirin at Baseline

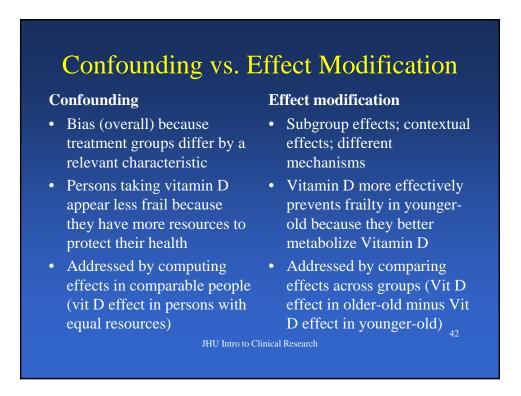
	Lo	Losartan (n = $1,004$)			enolol (n =	966)	Adjusted* Hazard Ratio		
End Point	n	%	Rate†	n	%	Rate†	(95% CI)	p Value	
Primary composite end point‡	128	12.7	28.3	180	18.6	42.1	0.68 (0.55-0.86)	0.001	
Cardiovascular mortality	56	5.6	11.8	76	7.9	16.7	0.73 (0.52-1.03)	0.074	
Stroke	61	6.1	13.4	94	9.7	21.8	0.63 (0.45-0.86)	0.004	
Myocardial infarction	44	4.4	9.6	58	6.0	13.1	0.75 (0.51-1.11)	0.16	
Other prespecified end points									
Total mortality	106	10.6	22.4	121	12.5	26.6	0.86 (0.66-1.12)	0.26	
Hospitalization for									
Angina pectoris	53	5.3	11.6	48	5.0	10.9	1.10(0.74-1.62)	0.64	
Heart failure	45	4.5	9.8	53	5.5	12.1	0.84 (0.56-1.25)	0.39	
Revascularization	100	10.0	22.5	109	11.3	25.5	0.91 (0.70-1.20)	0.51	
New-onset diabetes§	58	6.9	15.3	57	7.1	15.6	0.98 (0.68-1.41)	0.91	

For degree of left ventricular hypertrophy and Framingham risk score at randomization. †Per 1,000 patient-years of follow-up. ‡Cardiovascular mortality, stroke, and myocardial infarction; patients with a first primary end point. \$Among patients without diabetes at randomization (losartan n = 843; atenolol n = 799). CI = confidence interval.

JHU Intro to Clinical Research

39


Table 5. End Points in Losartan- and Atenolol-Treated Patients Not Taking Aspirin at Baseline


	Losartan (n = 3,601)		3,601)	Atenolol $(n = 3,622)$			Adjusted*	
End Point	n	%	Rate†	n	%	Rate†	(95% CI)	p Value
Primary composite end point‡	380	10.6	22.6	408	11.3	24.3	0.95 (0.82-1.09)	0.46
Cardiovascular mortality	148	4.1	8.5	158	4.4	9.1	0.96 (0.77-1.20)	0.71
Stroke	171	4.7	10.1	215	5.9	12.7	0.80 (0.66-0.98)	0.034
Myocardial infarction	154	4.3	9.0	130	3.6	7.6	1.21 (0.96-1.53)	0.11
Other prespecified end points								1
Total mortality	277	7.7	15.9	310	8.6	17.8	0.91 (0.77-1.07)	0.24
Hospitalization for								
Angina pectoris	107	3.0	6.3	93	2.6	5.4	1.18 (0.89-1.56)	0.25
Heart failure	108	3.0	6.3	108	3.0	6.3	1.02 (0.78-1.34)	0.86
Revascularization	161	4.5	9.5	175	4.8	10.3	0.94 (0.76-1.17)	0.58
New-onset diabetes§	184	5.8	12.4	263	8.3	17.9	0.70 (0.58-0.85)	< 0.001

Tor degree of left ventricular hypertrophy and Framingham risk score at randomization. †Per 1,000 patient-years of follow-up. ‡Cardiovascular mortality, stroke, and myocardial infarction; patients with a first primary endpoint. \$Among patients without diabetes at randomization (losartan n = \$43; atenolol n = 799). CI = confidence interval.

HU Intro to Clinical Research

40

Summary

- 1. Causal inference: comparing "otherwise similar" populations
- 2. Confounding means confusing: comparing otherwise dissimilar groups
- 3. Stratify by confounders and make comparisons within strata, then pool results across strata to avoid the effects of confounding
- 4. Effect modification when the treatment effect varies by stratum of another variable

JHU Intro to Clinical Research

43